案例:探究用户对物品类别的喜好细分降维
.66272ced.png)
数据如下:
- order_products__prior.csv:订单与商品信息
- 字段:order_id, product_id, add_to_cart_order, reordered
- products.csv:商品信息
- 字段:product_id, product_name, aisle_id, department_id
- orders.csv:用户的订单信息
- 字段:order_id,user_id,eval_set,order_number,….
- aisles.csv:商品所属具体物品类别
- 字段: aisle_id, aisle
1 需求
.e7dbdbbb.png)
.448e7367.png)
2 分析
- 1.获取数据
- 2.数据基本处理
- 2.1 合并表格
- 2.2 交叉表合并
- 2.3 数据截取
- 3.特征工程 — pca
- 4.机器学习(k-means)
- 5.模型评估
- sklearn.metrics.silhouette_score(X, labels)
- 计算所有样本的平均轮廓系数
- X:特征值
- labels:被聚类标记的目标值
- sklearn.metrics.silhouette_score(X, labels)
3 完整代码
python
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_scoreimport pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score- 1.获取数据
python
order_product = pd.read_csv("./data/instacart/order_products__prior.csv")
products = pd.read_csv("./data/instacart/products.csv")
orders = pd.read_csv("./data/instacart/orders.csv")
aisles = pd.read_csv("./data/instacart/aisles.csv")order_product = pd.read_csv("./data/instacart/order_products__prior.csv")
products = pd.read_csv("./data/instacart/products.csv")
orders = pd.read_csv("./data/instacart/orders.csv")
aisles = pd.read_csv("./data/instacart/aisles.csv")2.数据基本处理
- 2.1 合并表格
python# 2.1 合并表格 table1 = pd.merge(order_product, products, on=["product_id", "product_id"]) table2 = pd.merge(table1, orders, on=["order_id", "order_id"]) table = pd.merge(table2, aisles, on=["aisle_id", "aisle_id"])# 2.1 合并表格 table1 = pd.merge(order_product, products, on=["product_id", "product_id"]) table2 = pd.merge(table1, orders, on=["order_id", "order_id"]) table = pd.merge(table2, aisles, on=["aisle_id", "aisle_id"])- 2.2 交叉表合并
pytable = pd.crosstab(table["user_id"], table["aisle"])table = pd.crosstab(table["user_id"], table["aisle"])- 2.3 数据截取
pytable = table[:1000]table = table[:1000]3.特征工程 — pca
pytransfer = PCA(n_components=0.9) data = transfer.fit_transform(table)transfer = PCA(n_components=0.9) data = transfer.fit_transform(table)4.机器学习(k-means)
pythonestimator = KMeans(n_clusters=8, random_state=22) estimator.fit_predict(data)estimator = KMeans(n_clusters=8, random_state=22) estimator.fit_predict(data)5.模型评估
pythonsilhouette_score(data, y_predict)silhouette_score(data, y_predict)